
Soil Subsurface Channel Statistical Characterization
for Drone-Borne Intelligent GPR Advancement

Noushin Khosravi Largani
Data Science Department

Worcester Polytechnic Institute (WPI)
Worcester, MA, USA

nlargani@wpi.edu

Seyed (Reza) Zekavat
Data Science Department

Worcester Polytechnic Institute (WPI)
Worcester, MA, USA

rezaz@wpi.edu

Vincent Filardi
Data Science Department

Worcester Polytechnic Institute (WPI)
Worcester, MA, USA

vfilardi@wpi.edu

Abstract—The advancement of drone-borne intelligent Ground
Penetration Radar (GPR) is hinged upon accurate received
signal feature extraction, which relies on high-performance soil
subsurface channel estimation. This requires the optimal design
of the transmitted waveform, which needs soil subsurface channel
parameter statistics. In this paper, we investigate the statistics
of soil subsurface channel parameters for different soil textural
classes (defined by sand and clay percentage, and adopted based
on the USDA textural triangle). Channel parameters statistics
of interest are the gain correlation matrices, the statistical
distributions of gain and Time-of-Arrival (ToA), and the mean
Power-Delay Profile (PDP). Channel gain correlation matrix and
its distribution are critical to waveform design. Mean PDP offers
insight into the number of soil layers. The results of this paper
contribute to the intelligent optimal waveform design for GPR,
the implementation of feature extraction in ML applications, and
accurate estimation of soil layers, moisture, and permittivity.

Index Terms—GPR Channel Statistics, Waveform Design, Soil
Subsurface, Emulation Parameter Selection

I. INTRODUCTION

Drone-borne Ground penetration radar (GPR) is one of
the most effective and ubiquitous tools for noninvasive soil
subsurface characterization of large-scale land areas, making
it applicable to numerous fields including civil engineering,
environmental studies, archaeology, and agriculture [1], [2].
To extract the subsurface features such as permittivity, con-
ductivity, and the number of layers efficiently, GPR transmits
a signal over a wide frequency spectrum through the ground
and records the received reflections. The received GPR signal
is formed by an interaction between the transmitted wave-
form and the soil subsurface channel. A key parameter to
characterize soil subsurface channel is its impulse response
that includes an array of Time-of-Arrivals (ToAs) and their
associated coefficients, known as channel gains [3], [4].

Optimal waveform design involves high-performance im-
pulse response parameter estimation that in turn enhances
the estimation of soil subsurface features such as texture,
and moisture content. Optimal waveform design requires prior
knowledge of the channel parameters’ statistics such as the
mean, covariance, correlation matrix, and distribution of chan-
nel gains [5]–[9]. Moreover, soil subsurface investigation in
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modern agricultural analysis is increasingly conducted using
advanced machine learning (ML) techniques [10]–[12]. To
optimize ML feature extraction from the received GPR signal
and improve the performance of ML models, a thorough
understanding of the soil channel parameters’ statistical prop-
erties is of utmost importance.

Soil channel characterization has been explored from differ-
ent aspects in the existing literature, offering an understanding
of its applications and complexities. The authors of [13], [14]
study soil channels where both transmitter and receiver are
located in the soil medium. In [15], the soil-air channel is as-
sessed to achieve a precision irrigation system. However, [13]–
[15] do not offer detailed knowledge about channel statistics.
In [16] and [17], air-soil channel statistics such as coherence
bandwidth and the distribution of received signal magnitude
are examined, respectively. The impact of soil parameters on
the soil channel statistics in underground channels has been
comprehensively investigated [4].

Although the mentioned studies thoroughly characterize the
soil channel, they are not sufficient to entirely encompass soil
channel investigation in air-coupled GPR scenarios. Because
all of them follow an invasive approach, in which either or
both of the transmitting and receiving antennas are buried
in the soil. Accordingly, the distribution obtained for channel
gains and other channel parameters cannot be applied to GPR
systems. In addition, none of them have obtained and analyzed
the correlation coefficients of soil channel gains, which is the
most essential prerequisite for waveform design.

This paper studies air-coupled GPR statistical assessment of
soil channel that is critical to GPR optimal waveform design.
Here, we evaluate soil channel parameters’ statistics for each
of the three soil classes (i.e., silt loam, sand, and clay), repre-
sented at the corners of the USDA textural triangle. For each
soil class, We have obtained more than 700 GPR signals. For
each GPR received signal, we acquire the soil subsurface chan-
nel impulse response parameters (channel gains and ToAs).
Then, we extract the statistics of the mentioned parameters that
include the channel gain correlation matrices, the statistical
distributions of channel gain and ToA, as well as mean Power-
Delay Profile (PDP). Among these statistics, the correlation
matrix and distribution of channel gains have the most impact
on optimal waveform creation. The paper highlights the impact



of soil subsurface texture on the statistics, and provides insight
into how optimum waveform design should be implemented
for soil subsurface channel assessment. The results of this
paper contribute to the intelligent optimal waveform design
for GPR, support the implementation of feature extraction in
ML applications, and, provide insights on how to utilize the
observed high cross-correlation among the channel gains for
feature selection in ML models.

Soil subsurface channel is introduced in Sections II. Channel
statistical feature characterization, emulation parameter selec-
tion, results and discussions, and conclusions are presented in
Sections III, IV, V and VI, respectively.

II. SOIL SUBSURFACE CHANNEL

The GPR-transmitted signal travels through the soil medium
and interacts with the properties of the soil. The soil chan-
nel statistical characteristics, measured via the GPR received
signal, vary with the waveform’s features such as carrier
frequency and spectrum, and the soil’s physical characteristics,
including texture, bulk density, particle density, moisture,
number of layers, and the depth per layer, which are described
in the following. High-resolution soil subsurface channel im-
pulse response evaluation requires a waveform with a large
frequency bandwidth. Hence, the transmitted waveform shall
consist of multiple frequency components. Each frequency
component is attenuated differently with the soil channel. For
example, high-frequency components may constitute higher
attenuation compared to low-frequency components. In addi-
tion, soil medium alters the speed of propagation differently at
each frequency component. Thus, a wider waveform spectrum
(bandwidth) includes more information content about the soil
channel. This makes wider spectrum waveforms more suitable
for ML applications.

According to the USDA textural triangle (Fig. 1), the soil
texture (i.e., percentage of sand, clay, and silt) is categorized
into twelve types such as silt loam, sand, clay, etc. Soil’s
bulk density refers to the mass of dry soil per unit volume of
soil and air. Soil’s particle density represents the mass of dry
soil per unit volume of soil particles only (without air) [19].
The soil’s texture, bulk density, and particle density influence
the signal’s attenuation and channel statistics. In general, as
the sand percentage increases and that of clay decreases,
signal attenuation decreases. The reason is that sand has the
lowest and clay has the highest capacity for water holding,
which is due to the sand’s large and clay’s small pore space.
Water holding is an element showing the electromagnetic wave
absorption by soil [4], [19]. Smaller pore space indicates
higher bulk density [19], [20]. Silt loam falls between sand and
clay in terms of the properties mentioned [4]. Particle density
is almost the same for different textural classes of soil. Higher
particle density indicates greater compactness of soil particles,
which leads to increased signal attenuation [20].

As the signal travels deeper into the soil layer, it gets more
attenuated. In addition, the heterogeneous nature of soil leads
to receiving multiple reflections of the transmitted signal at
the receiver, where the reflections may strengthen or weaken

Fig. 1. USDA textural triangle [18]

each other [4]. Increasing the number of layers is the other
reason for receiving multiple reflections [3]. Due to the signal
absorption by water molecules, the signal strength is reduced
as it propagates through moist soils [19]. Moisture is regarded
as the dominant factor that determines soil permittivity. Specif-
ically, [21] has offered the empirical relationship for effective
permittivity κ of a material composing of different components
such as soil, water, air, represented by:

κ =
[
(1− η)

√
ks + (η − VWC)

√
ka + VWC

√
kw

]2
,

(1)
in which dielectric permittivity of soil, air, and water are
denoted by ks, ka, and kw, respectively. The parameters η
and VWC represent the soil porosity and the free soil water
content, respectively. As kw is approximately 81 within the
GPR frequency range, while ka = 1 and ks ranges from 4
to 7, the dominant impact of water volume percentage on the
effective permittivity can be inferred [22].

III. SOIL CHANNEL STATISTICAL CHARACTERIZATION

This section presents the applied post-processing method for
extracting soil channel impulse response (SCIR) using time-
domain GPR received signals. The soil medium serves as a
channel between the GPR transmitter and receiver, character-
ized by a time-domain SCIR that corresponds to:

h(t) =

L∑
l=1

alδ(t− τl), (2)

where al and τl represent complex channel gains and ToAs,
respectively. Here, L represents the number of multiple reflec-



tions [3], [4]. The relationship between the transmitted and
received signals in the frequency domain is:

Y = HX +N, (3)

in which H , N , X , and Y indicate the Fourier transform of
SCIR, noise, transmitted signal, and received signal, respec-
tively. The extracted SCIR is depicted in the frequency domain
as H = Y

X [3]. Applying the Inverse Fourier Transform, the
SCIR in time domain h(t) is acquired.

Here, we evaluate mean, correlation matrix, and distribution
of channel gains, distribution of ToAs, and mean PDP statistics
of soil channel. The mean of channel gains are correspond to:

E{al} =
1

N

N∑
n=1

al,n, (4)

where N refers to the number of GPR received signals for
each soil type. al,n is the nth extracted al, where n = 1 : N
and l = 1 : L. As mentioned, L is the number of multiple
reflections. The elements of the covariance matrix of channel
gains are expressed as:

CoV{al, al′} =
1

N − 1

N∑
n=1

(al,n − E{al}) (al′,n − E{al′}) ,

(5)
in which al′,n denotes nth extracted al′ for l′ = 1 : L. The
elements of the correlation matrix are represented by:

ρal,al′ =
CoV{al, al′}

σal
σal′

, (6)

in which σal
and σal′ indicate standard deviation of al and al′ ,

respectively. Mean PDP illustrates the average received power
for each delay bin, which is determined by the transmitted
signal’s bandwidth [4]. The distribution of channel gains and
ToAs are extracted in terms of cumulative distribution function
(CDF).

IV. EMULATION PARAMETER SELECTION

We use gprMax to emulate a large number of synthetic
GPR received signals for each soil class (i.e., silt loam, sand,
and clay), and then extract the SCIR statistics specific to
each class. gprMax software is a strong emulation tool that
employs the Finite Difference time domain (FDTD) method
to create synthetic GPR received signals [23]. This software
has been used for GPR synthetic data creation in numerous
studies [11], [24]–[26]. gprMax uses the Peplinski model
to emulate soil medium, which requires the soil parameters
including the percentage of sand, the percentage of clay, bulk
density, particle density, and moisture range (minimum and
maximum moisture percentage). We create the geometric area
(polygon) of each textural class (silt loam, sand, and clay)
based on the USDA textural triangle (Fig. 1). Then, within
each polygon area, we randomly select the percentages of sand
and clay to introduce variability and randomness in the soil
texture. By repeatedly selecting different percentages of sand
and clay within each polygon area and conducting simulations
accordingly, we generate a large number of output files for

each soil class, from which we then extract statistics. Since the
moisture content plays the dominant role in affecting the soil’s
permittivity [22], we set it to a low value (such as 5% [22])
to be able to observe the impact of soil’s texture on the soil
channel statistics. Accordingly, the minimum and maximum
moisture percentages are chosen to be 5 and 6, respectively.
Given the consistent particle density across different soil
classes, approximately 2.66 grams per cubic centimeter as
noted in [20], we have set the particle density to this value
in our analysis. To highlight the impact of textural class on
soil channel statistics, we maintained a consistent bulk density
across all soil classes, setting it at 1.33 grams per cubic
centimeter. This value is included within the bulk density range
typical for all soil classes [27], [28].

The Peplinski model works in a frequency range of 300
MHz to 1300 MHz [29]. For soil illumination, we select
the Ricker waveform, which is commonly employed in GPR
inspections and closely resembles the GPR pulses [24]. The
Ricker waveform’s center frequency (fc) is established at
825 MHz, leading to the minimum (fmin) and maximum
(fmax) frequencies to be 375.168 MHz and 1274.831 MHz,
respectively (according to the equations provided in [30]).
Hence, the transmitted waveform’s frequency is contained
in the acceptable frequency range for the Peplinski model.
Accordingly, the system’s bandwidth and range resolution are
899.663 MHz and 17 cm, respectively. The depth of the soil
medium (along the z dimension) is set to be more than the
range resolution (20 cm in our emulations).

To select an appropriate size for the surface of the soil
medium (x-y plane), we conduct an additional series of
emulations where the setup and all parameters remain con-
stant, and only the surface dimensions (x and y) change for
each emulation run. The channel gains vector is extracted
for each emulation. In different emulations, the surface size
is incrementally increased, and we calculate the Euclidean
distance between the channel gains vector associated with each
x-y size and the immediately larger x-y size. The Euclidean
distance is normalized to the size of the channel gains vector
associated with the larger surface size and is obtained in terms
of percentage, which is our defined error measure. As the
surface size increases, the error measure decreases, but the
required time and memory also increase. To maintain a trade-
off between accuracy and time-memory efficiency, we choose
a size providing an acceptable value for the error measure.
The emulations reveal that to achieve an error of 10 percent or
less while efficiently using time and memory, the appropriate
surface size is x = y = 120 cm, approximately around 1.5λmax,
where λmax = C

fmin
and C is the speed of light.

To capture multiple reflections from the soil, we choose
a dipole antenna for its omnidirectional radiation pattern.
The dipole antenna is positioned centrally on the x-y plane,
consistent with its radiation pattern [31]. The height of the
dipole antenna is set to be 41 cm (more than λmax

2 ) from the
soil surface, which is within the dipole antenna’s intermediate-
field region and results in desired outputs [31]. The FDTD
pixel size (∆l) in gprMax is determined based on the minimum



wavelength. More specifically, ∆l ≤ λmin

10 , where λmin =
C

fmax
√
ϵr,max

and ϵr,max denotes the maximum permittivity of
the medium. Considering that water, with a permittivity of
approximately 80, is included in our soil medium simulations
and represents the maximum permittivity, we set ∆l = 0.0008
in our emulations.

V. RESULTS AND DISCUSSIONS

We obtain more than 700 GPR received signal samples
corresponding to each three classes of soil, i.e., sand, silt
loam, and clay as shown in Fig. 1. These samples are used
to compute the soil channel statistics. The percentage of sand
and clay in each soil class region are selected such that each
point within that region is adopted with a uniform probability.
All emulations consider the same moisture, bulk density, and
particle density.

Fig. 2 depicts the mean PDPs of silt loam, sand, and clay.
The peak power of the reflection from the soil surface is
0.004, which is approximately eight times higher than that
of reflections from the inside of the soil, at 0.0005. This
indicates that multiple reflections from inside the soil are
significantly weaker due to attenuation, a factor that must
be considered when configuring the receiver’s dynamic range.
The two clusters in Fig. 2 represent the reflections from the
soil surface and reflections from the inside of the one-layer
soil. Hence, the number of clusters in the mean PDP indicates
the number of layer interfaces, offering insights into the layer
structure. Moreover, identifying these clusters enriches the
interpretation of the correlation matrix for channel gains, as
will be discussed next.

Fig. 2. Mean PDP for silt loam, sand, and clay

Fig. 3 presents the correlation matrix (indicated as correla-
tion heatmap) of the channel gains for sand. The correlation
matrix is extracted for silt loam, sand, and clay, with all
three displaying similar patterns. The number of resolvable
reflections is eight. Hence, the channel gains are a1 to a8, with
a correlation matrix of 8 × 8. Here, we define the following

measures for correlation based on the absolute value of a cross-
correlation coefficient: highly correlated, if greater than 0.7,
slightly correlated if between 0.3 and 0.7, and uncorrelated
if less than 0.3. Accordingly, the correlation matrix indicates
that the channel gains associated with the second cluster in
Fig. 2, i.e., the reflections from the inside of the soil are highly
correlated. The high cross-correlation (close to one) among the
channel gains from reflections within the soil cluster suggests
that they share the same information. Knowing one of these
values provides nearly all the information content. Therefore,
for a downstream ML model (see [32]), it is sufficient to
use only one channel gain from this group as a feature.
Furthermore, we extract the mean of the absolute values of
channel gain cross-correlations for sand, silt loam, and clay,
with clay showing the highest value (0.97) and sand the
lowest (0.88). The reason is that sand has the largest and
most irregular particles, leading to greater randomness, while
clay exhibits the opposite characteristics. This observation
highlights that the mean of the absolute values of channel gain
cross-correlations can be used as a feature for texture detection
using GPR-received signals. Moreover, as mentioned in the
introduction, channel gain statistics are critical to optimal
waveform design. The results depicted in Fig. 3 highlight
that the channel gains are highly correlated. Based on the
classical theoretical foundations of optimal waveform design
(see [5]–[7]), if the channel gains are correlated, optimal
waveform design requires the availability of the channel gain
distributions.

Fig. 3. Correlation heatmap for channel gains of sand

Fig. 4 shows the empirical and fitted Cumulative Distri-
bution Function (CDF) curves of channel gains for silt loam.
The curve follows a Normal distribution. In addition, the CDFs
for sand and clay follow a Normal distribution. The Normal
distribution for the soil channel facilitates a straightforward
approach for optimal waveform design [5]–[9]. Given the
distribution of each gain is normal, with the assumption of
jointly Normal distribution, the overall probabilistic behavior



of the channel gain vector can be determined based on the
correlation matrix and mean information, which is key to op-
timal waveform design. It should be noted that the high cross-
correlation between the elements of the Normally distributed
channel gain’s vector can be leveraged for the implementation
of ML models, which can estimate all gains based on the
availability of one gain. This is a basis for the simplification
of the computation process of optimal waveforms.

Fig. 4. Empirical and fitted Normal CDF of silt loam

The absolute values for mean and standard deviation (std) of
the CDF of soil channel gains for sand, silt loam, and clay are
shown in Table I. The table results show that the mean and std
values of channel gains’ CDF for sand, silt loam, and clay are
close to each other. Hence, these values are unlikely to serve
as effective features for distinguishing soil texture during ML
training.

TABLE I
MEAN AND STANDARD DEVIATION FOR DIFFERENT SOIL TEXTURES

Texture Mean Std
Sand 0.009 0.032

Silt loam 0.012 0.032
Clay 0.011 0.031

Fig. 5 indicates the CDF of ToAs for clay. The CDF of ToAs
for silt loam and sand are extracted as well. This feature is
useful in the selection of optimal bandwidth and pulse duration
for the transmitted signal, leading to resolution maximization
and interference minimization. The CDF of ToAs for clay is
completely similar to that of silt loam and sand. Due to this
similarity, the CDF of ToAs is unlikely to serve as a suitable
feature for texture classification in ML applications as well.

VI. CONCLUSIONS

The paper extracts the statistics of soil channel for three
corners of the USDA textural triangle, i.e., silt loam, sand,
and clay under the same condition for moisture. The moisture
levels are kept low to minimize its significant impact on wave

Fig. 5. CDF of ToAs for clay

propagation through the soil. The extracted statistics include
the gain correlation matrices, the statistical distributions of
gain and ToA, as well as mean PDP. We show that according
to the observed high cross-correlation among channel gains
from soil reflections, they convey nearly identical information,
and using a single channel gain from this group as a feature
for ML training is sufficient. In addition, we indicate that the
empirical distribution of channel gains follows a Normal dis-
tribution, allowing straightforward optimal waveform design
and implementation of ML models for soil channel estimation.
We show that the mean of the absolute values of channel gain
cross-correlations can be used as a feature for texture detection
using GPR-received signals. On the other hand, ToA, and the
mean and std of channel gains’ CDF are unlikely to serve
as effective features for distinguishing soil textures in ML
applications. The presented results are applicable in areas such
as waveform design and consequently accurate estimation of
soil layers, moisture, and permittivity. Moreover, our statistical
analysis provides useful insights into the feature engineering
area of ML applications. This research is critical to our
future directions for the development of optimal waveform
for various soil texture and moisture conditions.
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