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Abstract—This paper is the first attempt toward the realization
of intelligent soil subsurface moisture characterization via a
pulse-modulated Stepped Frequency Continuous Wave (SFCW)
Ground Penetrating Radar (GPR). The GPR design is stan-
dalone, autonomous, and drone-rated (compact and light-weight),
facilitating the development of an airborne GPR for megafarm
moisture assessment. The design also enables the implementation
of diverse waveforms for the transmitted signal. Thus, the
waveform can adaptively be adjusted to optimally extract the
soil subsurface features from the received signal. Based on a
measurement campaign conducted in the summer of 2024, the
paper assesses the performance of moisture estimation using
multiple Machine Learning models applied to the received signal
power features across all frequency components of the SFCW
waveform. The results confirm the potential of the designed radar
for intelligent soil moisture estimation.

Index Terms—Ground Penetrating Radar, Soil Moisture, Pulse-
Modulated Stepped Frequency Continuous Wave, Intelligent,
Adaptive, Machine Learning

I. INTRODUCTION

Climate change has significantly affected groundwater re-
sources. For instance, in the United States, groundwater re-
sources in many states, including Nebraska, Iowa, and Kansas,
are shrinking, and megafarms are among the primary con-
sumers of underground water resources. On the other hand,
overwatering washes away critical soil minerals. Therefore,
water usage in megafarms should be optimized to avoid waste
and maintain soil minerals. Farmers in megafarms apply the
same amount of water to the soil. However, the texture and,
consequently, the hydraulic water capacity of the soil varies
across the vast lands of megafarms [1]. Therefore, it is critical
to assess soil texture within megafarms and understand which
parts can retain moisture longer. Moisture probe reading is a
traditional method to assess soil moisture content. However,
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the implementation of moisture probes in megafarms is expen-
sive in terms of both equipment and the required manpower.
Additionally, logistically, it is challenging to implement mois-
ture probes because the equipment installed in the ground can
hinder the processes of planting and harvesting.

Ground Penetrating Radar (GPR) can detect subsurface
features by analyzing the reflected signals from the ground.
Traditionally, scientists have conducted common mid-point
and common off-set scans for the extraction of subsurface fea-
tures, which were complex and time-consuming processes that
required expert opinion. Recently, intelligent GPR has been in-
troduced that maps the received signals to subsurface moisture
features through Machine Learning methods [2][3][4][5][6][7].
There are a large number of off-the-shelf GPRs capable of
extracting soil subsurface features. For example, AKELA has
introduced a Stepped Frequency Continuous Wave (SFCW)
radar. The operator can select a set of frequency components
within the 0.4-2GHz range, with 40MHz step frequency [2].
AKELA radar has a fixed built-in signal processing technique
for transmitted and received signals, which prevents operators
from implementing different signal reception methods for any
intelligent feature engineering. It integrates the time domain
data associated with each frequency component within 0.4
- 2GHz and only returns a set of complex numbers as the
received signal associated with the adopted frequency compo-
nents. Furthermore, the radar is only capable of using SFCW
waveform. In addition, AKELA currently holds a commercial
license, but because the company is not operational, it is im-
possible to customize its embedded code to make it compatible
with different measurements. As a result, we are unable to
retrieve the original time domain data. This prevents us from
extracting range bin information and developing other signal
processing techniques that could provide a broader range of
information and enhance the performance of this radar for soil
subsurface characterization.

Moreover, the transmitted signal by GPR interacts with
the soil subsurface channel to create the received signal.
Thus, the transmitted signal should be properly, optimally,



and adaptively selected to enable high-performance estimation
of soil subsurface features. Thus, accurate soil subsurface
characterization requires the development of a radar capable
of changing its waveform and signal processing methods.
The waveform spectrum, particularly its bandwidth, is cru-
cial for radar range resolution. A higher bandwidth leads to
finer resolution, but high-bandwidth radar hardware is very
expensive. As an alternative, multiple narrowband signals
are typically transmitted over multiple carrier frequencies to
achieve high-resolution solutions, which FMCW (frequency-
modulated continuous wave), SFCW, and OFDM (orthogo-
nal frequency division multiplexing) waveforms are a few
instances. [8][9][10][11][12].

This paper introduces the first GPR developed by the SoilX
lab at Worcester Polytechnic Institute (WPI)[13]. The GPR
specifically designed to facilitate waveform and frequency
control facilitated by various waveforms and preprocessing
operations through coding within the radar computer. The pro-
posed Radar is developed using a low-cost spectrum analyzer
capable of operating within the range of 0.2 - 1.5 GHz, which
is essential for our experiment. To collect labeled data for
soil moisture content extraction, we have conducted a field
measurement campaign, and the labels were created via a
moisture probe. We analyzed the collected GPR data to extract
features that are closely related to soil moisture content. Here,
we examined the mean of received power of the reflected
transmitted signals, which is directly linked to soil moisture
content. Different machine learning techniques such as Ran-
dom Forest, Linear Regression, Lasso Regression, Decision
Tree, and XGBoost were applied to extract moisture features.
The results confirm that there is a relationship between the
soil water content (SWC) and the amount of received power.

This paper is organized as follows. Section 2 introduces the
Radar system design, Section 3 explains the experiment setup
and measurement method, Section 4 analyzes data.

II. RADAR SYSTEM DESIGN

GPR characterizes soil subsurface by analyzing backscat-
tered signals that are formed by an interaction of the soil
channel and the transmitted waveform. Soil channel is charac-
terized by the soil electric features such as its relative electric
permittivity, ϵr, which is determined by the soil texture,
composition, and moisture (TCM). Thus, the received GPR
signal includes the texture and moisture signatures of the
soil subsurface [14]. Adoption of a proper frequency range
is critical to extracting these signatures. For example, Fig. 1
shows frequency ranges (200 MHz to 1.5 GHz, L-band) within
which the signal is considerably attenuated with soil moisture
content. In addition, as shown in the figure there is a change
in the slope of the attenuation at a certain frequency range
which changes with moisture content. Thus, there are two
pieces of information: (1) certain frequency ranges are critical
to the extraction of moisture content, and (2) within that
frequency range the attenuation features at certain frequencies
are critical to moisture estimation. Our radar has been designed
to operate within this frequency range to facilitate the creation

of signatures that enable high-performance soil subsurface
characterization.

Fig. 1. Effective range of frequency to study soil water content from 200MHz
to 1.5GHz. The graph shows how attenuation per depth (dB/m) changes for
different amounts of moisture for a range of frequencies.

A. Radar Hardware Configuration

The designed and manufactured radar system consists of five
main components: a transmitter (Signal Hound VSG25A), a
receiver (Signal Hound SA44B), RF analog components such
as power amplifiers, low-noise amplifiers, and low-pass filters,
two log-periodic antennas for transmission and reception of
EM signals, and a mini PC to operates the transceiver compo-
nents and store received data. The transmitter can operate in
the frequency range of 100MHz to 2.5GHz with a maximum
output power of 10dBm (10mW), capable of transmitting
different waveforms for adaptive design. The receiver works
over a similar frequency range with a dynamic range from
-151dBm to 10dBm in combination with the LNA, capturing
reflected signals affected by the soil’s electric permittivity.
The lightweight, directional log-periodic antennas can work
from 100MHz to 4GHz, making them suitable for airborne
applications. A power amplifier with a gain of 10dB boosts
the amplitude of the transmitted signal, resulting in an output
power of 20dBm (100mW), enhancing the signal strength
without adding excessive weight. Finally, a mini PC controls
the transceiver components and manages data acquisition and
storage, supporting real-time analysis and decision-making ca-
pabilities. This integrated radar system balances performance
with practical considerations for airborne deployment, provid-
ing a reliable platform for analyzing soil features through the
GPR technique.

B. Waveform Design

In this study, we use Pulse modulated SFCW to detect soil
features. The transmitted pulse for a specific carrier frequency
fk is defined by:

sk(t) = A · g(t) · cos (2πfkt), k = 0, 1, 2, . . . , 324. (1)



Fig. 2. Schematic of the radar configuration and the interconnections between
components.

Fig. 3. Real photo of Manufactured Radar with the transmitter (VSG25A),
the receiver (SA44B), log-periodic antenna, Power Amplifier, Low Noise
Amplifiers and Low pass filters.

The constant amplitude A is 10 dBm. The baseband envelope
g(t) = rect

(
t−Tp

τ

)
uses a pulse period Tp of 10 ms, pulse

width τ of 300 µs. The carrier frequency fk = f0 + k∆f
starts at f0 = 200 MHz and increases in ∆f = 4 MHz steps.
This SFCW signal spans 200-1500 MHz over 325 steps. Fig. 4
shows (a) the frequency increment over time and (b) the time-
domain representation of the transmitted signal.

Fig. 4. Representation of Carrier frequency vs Time (a) and Amplitude vs
Time (b) for Pulse modulated SFCW signal.

C. Signal Reception and Analysis

The radar receiver is equipped with an RF spectrum ana-
lyzer that can operate at different carrier frequencies ranging

from 200MHz to 1500MHz. The received signal rk for each
frequency component, fk, can be represented by:

rk(t) = sk(t) ∗ hk(t) , k = 0, 1, 2, . . . , 324. (2)

Here, sk(t) is the transmitted signal for the carrier frequency
fk and hk(t) is the associated channel response. At the
receiver, the received signal undergoes attenuation or ampli-
fication processes to ensure that it falls within the spectrum
analyzer’s dynamic range. Then, the signal is down-converted
and passed through a filter bank to remove high-frequency
noise. After that, the baseband received signal at each carrier
frequency component is sampled using an analog-to-digital
converter. Finally, a Fast Fourier Transform is performed by
the spectrum analyzer to create 50,000 samples in the fre-
quency domain. Accordingly, the received power spectrum of
each carrier frequency component, fk where k = 0, 1, . . . , 324
corresponds to:

P(fk) = {γm(fk),m = −J + 1, . . . , J} , (3)

where J = 25, 000, and γm, is the power in milli-watts for
each of the 50,000 frequency samples.

We set up the receiver to receive all the 325 carrier
frequencies transmitted step by step so that at the end of
the ith round of measurement, there are 325 received signal
spectrums associated with 325 transmitted carrier frequencies.
This process is performed automatically by the spectrum
analyzer (SA44B) for each measurement. For a particular
measurement i, we show a plot of Pi(fk) at particular carrier
frequency fk in Fig.5 with frequency Hz in the x-axis and
power in milliwatts (mW) for the y-axis. In the Plot, we
can observe both the main lobe and accompanying side lobes
of Pi(fk). We have noticed for a particular measurement i,
this plot varies over all 325 carrier frequency components.
As the subsurface conditions change over multiple days with
the flow of water, we have noticed for a particular carrier
frequency fk, the plots of Pi(fk) exhibit variations as well.
With this very raw version of the received GPR signal from our
radar, we will perform feature engineering over each carrier
frequency’s individual Pi(fk) and examine their usefulness in
characterizing subsurface conditions.

Fig. 5. A plot of a received power spectrum, Pi(fc), from measurement
i, for certain carrier frequency, fc, over 50KHz frequency span. The y-axis
shows the power in mW per frequency sample. Annotated are the main and
side lobes.



III. MEASUREMENT CAMPAIGN

To evaluate our radar configuration and train machine
learning models to estimate SWC, we conducted 24 rounds
of measurement. Our measurement setup simulated a drone in
flight over farmland with the radar consistently positioned at
a height, H , of 1 meter above the ground, as shown in Fig.6.
The moisture level of the target area was measured using 6
sleeves implanted in the ground by inserting the PR2 SDI-
12 moisture probe [15]. The inserted probe measured the soil
moisture in millivolts (mV), which we can convert to moisture
percentage (%M) by the manufacture look-up table. The probe
has the ability to measure mV and %M at 6 depths 10, 20,
30, 40, 60, and 100 cm when inserted into a sleeve.

Fig. 6. Measurement Setup: measurements were taken via a suspended GPR-
equipped drone. The TX and RX antennas of the GPR were positioned H =
1 meter above the ground surface. Six ground planted sleeves A1, A2, B1,
B2, C1, and C2 used for assessment by the moisture probe.

From the 24 rounds of measurements, each GPR received
signal xi, i = 1, . . . , 24, can be represented as a vector of size
325, where each entry corresponded to the received impulse
response at a particular carrier frequency:

xi = {Pi(fk), k = 0, 1, . . . , 324} , (4)

where {fk, k = 0, . . . , 324} is the set of transmitted carrier
frequencies and Pi(fk) is set of size 50,000 of the received
power spectrum for fk. For each measurement i, we averaged
mV readings across 6 locations (A1, A2, B1, B2, C1, C2; Fig.
6) at 6 depths to obtain:

yi = {ȳd, d = 10, 20, 30, 40, 60, 100} , (5)

where ȳd was the averaged probe measurement at depth d
cm. This provided a mV reading representative of the soil
subsurface area under the GPR at each depth. For later data
analysis, we consider our dataset D = {(xi,yi)}n=24

i=1 over all
24 measurements.

IV. DATA ANALYSIS METHOD

In this section, we appied machine learning (ML) models to
explore whether any patterns can be revealed in the data from

our radar, potentially providing information about subsurface
properties. Towards this, we preprocessed our raw received
GPR signals by feature engineering across each individual
carrier frequency power spectrum and over our entire dataset.
We then used our engineered features as input to a few ML
models. If the models were successful in SWC prediction, it
would support both the utility of our engineered features and
the functionality of our new radar system in capturing soil
subsurface characteristics.

A. Preprocessing Methods

As discussed in Section II-C, our radar was able to return
a very raw form of each received carried frequency impulse
response Pi(fk) for a particular measurement i. From our 24
rounds of measurements, each GPR received signal xi, i =
1, ..., 24, can be represented as a vector of size 325, where each
entry corresponds to the received impulse response’s power
spectrum at a particular carrier frequency:

xi =
[
Pi(f0), Pi(f1), · · · , Pi(f324)

]
. (6)

To distill each power spectrum into features to capture soil
characteristics, we truncated each Pi(fk) to only over a
frequency range of 50 kHz frequencies around the center
carrier frequency and calculated the mean power:

P̄i(fk) =
1

2J

J∑
j=−J+1

γj(fk), (7)

for J = 25, 000 and γj ∈ Pi(fk). This truncation accom-
plishes dimensionality reduction of each Pi(fx) to a single
scalar for later ML models to use all carrier frequency steps
of the received signal. We expect when the subsurface soil
conditions are constant, different frequencies will reflect back
a different mean power. When the subsurface soil conditions
were not constant over multiple measurements at different
points in time, we expect variations in each particular carrier
frequency’s power spectrum’s mean power.

For our dataset of 24 GPR received signals, X =
[x1,x2, · · · ,x24]

T , we normalized each column to have a
mean of 0 and expressed the values in terms of standard
deviation units from the mean. To achieve this, we applied
Z-score normalization to each entry, P̄i(fk), of X as follows:

Zi(fk) =
P̄i(fk)− µk

σk
, (8)

where µk, σk is the mean and standard deviation the values
in column k or over the P̄i(fk)) for i = 1, . . . , 24 [16]. This
normalization ensured that each column or feature in X was
on the same scale for later ML training.

B. Model Training Methods

We evaluated several machine learning models: Linear Re-
gression (LR), Lasso, Decision Tree (DT), Random Forest
(RF), XGBoosted Random Forest (XGB), and a Dummy
Regressor (DUM) [16]. The models, except for DUM, used
Z-score normalized mean power per carrier frequency power



TABLE I
AVERAGE ML MODEL PERFORMANCE PREDICTING MV (0 TO 1000) OVER

ALL DEPTHS WITH ± STANDARD ERROR. THE MODEL WHICH OBTAINED
THE LOWEST OVERALL RMSE IS SHOWN IN GREEN.

Model/Metric RMSE (mV)

Linear Regression 116 ± 6

Lasso 99 ± 6

RF 114 ± 5

XGB 146 ± 8

DT 102 ± 8

DUM 205 ± 8

spectrum as input data. DUM served as a baseline model that
does not use any GPR data. It predicted SWC by averaging
probe measurements from the training set to estimate probe
measurements in the test set. The other ML models used
GPR data from the new radar. If these models outperformed
DUM, it would support our radar system’s responsiveness to
changes in subsurface media, like SWC. However, if DUM
provided more accurate SWC predictions without GPR data,
this may indicate one or more of the following issues: (1) the
GPR system may not be sufficiently responsive to changes in
subsurface conditions; (2) the selected ML models may not
be suited to make reliable predictions from the input GPR
signals; (3) the engineered feature extracted, P̄i(fk), may not
be useful for predicting SWC.

We used the root mean squared error (RMSE) as a metric to
evaluate the model performance [16]. The RMSE was defined
as:

RMSE =

√√√√ 1

n|y|

n∑
i=1

∥yi − ŷi∥2, (9)

where n is the number of measurements, |y| = 6 is the
length of the vector of probe measurements when predicting
all depths, and |y| = 1 when presenting results for a specific
depths.

To address the challenges posed by our limited dataset of 24
samples, we implemented a Leave-One-Out Cross Validation
(LOOCV) combined with an inner 5-Fold Cross Validation
[16]. For each of the 24 data points, 23 were used for training
and 1 for testing. Within each LOOCV iteration, we performed
an inner 5-fold cross-validation on the 23 training GPR
received signal samples to tune the model hyperparameters.

The optimal parameters are selected by minimizing the
RMSE between the ground truth values, yi, and the predicted
values, ŷi, across all training data points. The RMSE is
calculated based on (9) with |y| = 6 and n = 19 for
the number of training data points in each inner fold. This
parameter selection process ensured generalization as best as
possible across different probe depths and training subsets
to unseen test points. The selected model with the best set
of parameters from this inner loop was then applied to all
23 samples and used to predict the held-out test point. This
process was repeated for all 24 samples. We reported the

overall average RMSE over all depths with standard error
average over all the held-out test points in Table I and per
depth in Table II.

C. Results

Table I presented the average RMSE (see (9) with |y| = 6)
results. We observed that Lasso had the lowest RMSE over all
depths. The Tree-based models showed similar performance,
while XGB stood out with the highest RMSE at 146 ± 8 mV,
which may have overfitted on the small dataset.

Table II presented soil moisture results per depth (see (9)
with |y| = 1). It was observed that for depths 10, 20, and
30 cm, Lasso achieved the lowest RMSE between the ground
truth %M and the predicted. At these initial 3 depths, all ML
models had a lower RMSE than the DUM model by up to
54 percent, which supports our GPR system’s functionality.
This also showed that adopting P̄i(fk) as a feature may
enabled an adequate soil moisture prediction at shallow depths
by our selected ML models. For depths 40 cm and below,
we saw few ML models outperform DUM by a very small
margin. This pointed to a limitation of the ability for P̄i(fk) to
capture variations in soil characteristics at lower depths. This
suggested that predicting subsurface SWC at deeper soil layers
may require a more focused feature engineering approaches to
characterize deeper layers of the subsurface soil.

V. CONCLUSION

The paper introduces a new SFCW GPR that facilitates
the acquisition of a data set across multiple frequency bands,
which makes it uniquely suitable for ML-based soil subsurface
moisture estimation. The team conducted a measurement cam-
paign over the summer of 2024 to collect the data. Moisture
probe readings across multiple depths serve as ground truth
labels per GPR measurement. The power spectrum of each
carrier frequency provided by our GPR contains a variety of
features which can be extracted and leveraged for moisture-
depth estimation. The paper considers the average power per
carrier frequency as the feature and assesses the performance
of a set of ML models for subsurface soil moisture estimation.
The results confirm the utility of this feature as input to
ML models at near surface depths and supports our new
GPR system’s functionality. This study is considered the first
attempt to assess moisture information with our custom radar.
Our future work will investigate and compare other feature
engineering approaches on the received GPR signal. The
measurement campaign was conducted at WPI grounds. Our
future measurements will be organized at local farms and will
include comprehensive measurement campaigns that collect a
large amount of data at different altitudes.
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TABLE II
PERFORMANCE ASSESSMENT OF MOISTURE ESTIMATION AT DIFFERENT DEPTHS IN TERMS OF %M RMSE WITH ± STANDARD ERROR. %M (0 TO 100)
CALCULATED FROM MV BY PROBE MANUFACTURER’S LOOK-UP TABLE. IN GREEN ARE THE MODELS WITH THE LOWEST OBSERVED RMSE FOR EACH

SUBSURFACE DEPTH (CM).

Model / Depth 10 cm 20 cm 30 cm 40 cm 60 cm 100 cm

Lasso 5.4 ± 0.2 5.2 ± 0.2 5.6 ± 0.2 19.0 ± 0.7 20.1 ± 0.8 17.9 ± 0.7

RF 6.7 ± 0.3 5.6 ± 0.1 6.1 ± 0.1 18.6 ± 0.4 17.6 ± 0.6 18.2 ± 0.7

LR 5.8 ± 0.1 6.2 ± 0.1 5.9 ± 0.1 19.5 ± 0.2 21.7 ± 0.2 17.5 ± 0.2

XGB 6.9 ± 0.1 6.5 ± 0.1 7.0 ± 0.1 29.8 ± 0.3 29.4 ± 0.3 30.8 ± 0.3

DT 7.6 ± 0.1 6.0 ± 0.1 7.0 ± 0.1 18.6 ± 0.2 16.0 ± 0.2 18.3 ± 0.2

DUM 11.9 ± 0.1 10.1 ± 0.1 10.5 ± 0.1 17.9 ± 0.2 17.9 ± 0.2 17.8 ± 0.2
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